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ever, can be detected in two ways. First, the reflections 
h'k'l' with k '=  2n are present only if l ' =  2n. This con- 
dition is not required by any space group and indicates 
the presence of twins. Secondly, the ratio of the inten- 
sities of reflections h'k'l' and h', k', h' + l' (or h'k'l' and 
h'rk' p - h ' - l ' )  is constant (see Table 3). This result 
indicates that the sample is formed by at least two 
distinct individuals rather than being a single crystal. 

By increasing the chromium content in VOz, the 
values of a and 2c become closer and the obliquity 
associated with the laws (201) and (20T) decreases. It is 
therefore reasonable to expect that these laws become 
more frequent with increasing amount of chromium in 
the sample. The results obtained in the present study 
seem to confirm this deduction. In fact, while the value 
of ratio (1) indicates that in VO2+0-5 at.% Cr only 
11% of the total volume of the sample belongs to the 
individuals twinned with laws (201) and (20T), in 
VO2+2.5 at.% Cr about 40% of the total volume 
belongs to these individuals. Twins in which only the 
laws (201) and (20T) are operative are, therefore, more 
probable in samples of VO2 with a high chromium 
content. In these cases, unless twinning is detected, the 
systematic extinctions will inevitably lead to erroneous 
space groups. 

Note added in proof: N.m.r. measurements, obtained 
while this paper was in press, seem to indicate that the 

symmetry of the M3 phase is lower than 2/m (H. Lau- 
nois & T. M. Rice, private communication). For the 
sample of VO2+0.5 at % Cr, therefore, the operation 
(010) (or [0101180o) may become a possible twin opera- 
tion with vanishingly small obliquity (twinning by high- 
order merohedry, Friedel, 1964). This twinning, if pres- 
ent, cannot be detected by X-ray measurements at 
room temperature and it has no bearing on the inter- 
pretation of the other twins. All the conclusions ob- 
tained in the paper remain, therefore, unchanged. 
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Expressions are derived for the variances and covariances of molecular parameters by combining the 
error propagation equation and the formalism of Gibbs' dyadics. The resulting formulas concern bond 
angles, bond vectors and distances, torsion angles, the parameters that describe the best plane fitted to a 
set of atoms, and the dihedral angle between two such planes. All results include covariance terms be- 
tween the coordinates of different atoms, an important example being the torsion angle defined by atoms 
related by a twofold axis. An Appendix concerns the transformation properties of covariance matrix 
elements. 

In this paper a general method is developed for ob- 
taining the variances and covariances of molecular 
parameters, such as bond and torsion angles, from the 
positional covariance matrices of the atoms defining 
these parameters. Substantial use is made of the del 
operator, vectors, and dyadics (e.g., Gibbs & Wil- 
son, 1929; Wills, 1931; Zachariasen, 1944; Patterson, 

* Contribution No. 4287. 

1959). Dyadics are relatively unfamiliar, and matrices 
or tensors might have been employed instead. How- 
ever, the use of dyadics places the cross product at our 
disposal, which will prove fruitful. Instead of the cus- 
tomary covariance matrix of the atomic coordinates 
we shall introduce a covariance dyadic, a procedure 
that is justified in an Appendix. In turn, some of our 
results are in the form of covariance dyadics rather 
than of covariance matrices. We shall first investigate 
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parameters concerning two and three atoms, such as 
bond vectors, bond angles, and the angles of orienta- 
tion of a vector normal to the plane through three 
atoms. Parameters related to more than three atoms 
follow, such as torsion angles and the parameters that 
describe the best plane fitted to a set of atoms by the 
method of least-squares. Covariance terms between 
the coordinates of different atoms are included in our 
results, as well as the simplifications that result from 
isotropic positional variances and no covariance among 
different atoms. 

Variance and covariance matrices and dyadics 

Consider a typical structural molecular parameter A 
(r%ff . . . .  ), such as a bond distance or a bond angle,~ 
which depends on the positions r ~, if, . . .  of  the atoms 
defining it, which we label s, t , . . . .  Let the uncer- 
tainties in the positions of an atom, such as atom s, 
be described by the (symmetrical) covariance matrix;[: 
[C ~~] with the elements C~j, where the subscripts i and 
j refer to the three coordinate axes, which may, but 
need not be, Cartesian.§ The diagonal elements ( i= j )  
of [C '~] are the variances of the coordinates xl of atom 
s, and the off-diagonal terms ( i # j )  are the covariances 
between x[ and x}, coordinates that refer to different 
axes. When the covariance matrix [C ~] is isotropic and 
the coordinate system Cartesian, the off-diagonal 
terms of [C~q vanish; the diagonal terms are all equal 

2 for atom s, so that to the (scalar) positional variance o~ 

[c~q:@)[I] or c,.~=(~)6, (1) 

where [1] is the unit matrix, with components fi u (see 
also Appendix). The covariance between the coordi- 
nates .v~ and x} of different atoms is described by the 
matrix [C -~'] with the elements C~. An important cause 
of such covariances are symmetry relations (Sands, 
1966). 

The variance ~2(d) of A is given by the propagation- 
of-error equation 

bA ?A 
d(A): ~.,~ &~ c~.-ex-} • (2) 

Here and in later equations we use the customary con- 
vention that all indices occurring twice, on different 
symbols, must be summed over (here i and j ) ;  the in- 
dices s and t extend over all atoms concerned in the 
definition of A. For two different molecular parameters 

~" The word 'bond' as used here and later does not imply the 
existence of a chemical bond, but merely refers to a relationship 
between the atoms considered and a distance, an angle, or 
another parameter. 

.]: Matrices are denoted by bold-face capital letters in 
brackets, [C], vectors by bold-face lower-case letters, r, ~, and 
dyadics by bold-face capital letters, C, F. 

§ By 'Cartesian' we imply right angles between, and equal 
unit lengths along, the three axe% in conformance with wide- 
spread usage, 

A and B, such as two distances or an angle and a dis- 
tance, the covariance is, 

c~A c~B 
cov (A,B)=  s,,~ -~-x;i C,] ~x}" (3) 

Turning to vectorial quantities, the covariance matrix 
[F(p)] of a molecular parameter p contains variance 
as well as covariance terms of the components p~, 

F~,(p)= crZ(p,) (4a) 
and 

Fu(p) = Fj,(p) = coy (&,pj) (4b) 
for which 

c~p,,, -~, @. 
r.,,(p)= _ ~ ~-~] c .  -~x~. (5) 

For two vectorial parameters p and q the covariance 
matrix, [F(p,q)], has the elements 

c~p~ ~q. 
F,,, .(p,q)=cov (P" 'q" )=  s,t ~" t~x, C[~ ~c~-" (6) 

This matrix is not symmetric in general, its transpose 
being [F(q.p)]. Finally, the covariance matrix between 
a scalar parameter A and a vectorial parameter p is 
rectangular (1 x 3) rather than square, 

G ( A , p ) = c o v  (A,p , )=  Z ~A @, ~,, ~x~- C[~ -~x-~ " (7) 

Extension to variances and covariances of tensor com- 
ponents, such as temperature parameters B[~, is pos- 
sible also. 

Considerable simplification of the equations is 
achieved by using dyadics and the del operator V, 
defined in terms of Cartesian unit vectors i, j, k, along 
the x, y, z axes,* by 

-~x~ +j ~y~ + k ~z ~ (8) 

Moreover, we define positional covariance dyadics 
C ~t by combining the elements of the covariance ma- 
trices [CSt], appropriate to the Cartesian coordinate 
system chosen, with the vectors i, j, k: 

C " - - Z  ~ CT~ij (9) 
t J 

where both sums extend over the vector triple i, j, k. 
While a Cartesian coordinate frame has been used in 
(8) and (9), both V~ and C ~' are independent of the co- 
ordinate system. If the positional covariance matrix 
[C"] refers to a general crystallographic (rectilinear) 
coordinate system with axes ~ ,  ~2, aa, an equivalent 
definition of the dyadic C ~ is 

- " -  - 0 0 )  Cst = Guava  J 

double summation over i and j being implied. This 
relationship is justified in the Appendix, where V is 
also expressed in terms of crystallographic quantities. 
Note that the matrix [Ctq is the transpose of [C ~'] 

* The symbols x:y,z and x~,x~,x~ are used interchangeably. 
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whereas the dyadics C r~ and C ~' are what is called con- 
jugate, that is, their antecedents and consequents are 
interchanged. 

The definitions (8) and (9) permit us to write (2) in 
the form 

aZ(A)= ~ V~A . C ~t . V,A. (11) 

The dots on the right side of (11) imply respective 
scalar multiplication of the antecedents and the con- 
sequents of C ~t b:' the vector V~A (representing the 
gradient of A), the result being identical with (2). 
Equation (3) can be given a similar form 

cov (A, B)= ~ V~A. C ~' . V,B. (12) 
$01' 

The operator Vs may also be applied to a vector, 
such as p. The result, Vsp, is a dyadic that is, in gen- 
eral, not symmetrical, and it must be noted that it is 
the antecedents of V~ in Vsp that must be multiplied 
with C ~'. This is automatic when V~p is used as post 

factor. As prefactor the conjugate dyadic V~p must 

be used, so that, e.g. in V~p. C", it is again the an- 
tecedents of V~p that are scalarly multiplied with the 
antecedents of C ~'. The equations analogous to (7), (5), 
and (6) are then 

F(A,p)=  ~ V~A. C ~' . V,p (13) 
$ , t  

r ( p ) =  ~ V~p. C ~' . Vtp (14) 
$ , t  

F(p, q)= ~ V~'~. C st . V,q. (15) 
8,1[ 

Note that F(q,p) is the dyadic that is conjugate to 
r (p ,q) .  

Some results of  applying the del operator 

Application of V~ to the vector r~ with components x~ 
yields the idemfactor or unit dyadic, which we shall 
denote by I and which is the analog of a unit matrix 

V,r~ = I = ii + jj + kk.  (16) 

(More general expressions of I are given in the Appen- 
dix.) Similarly, Vs applied to the length r~ of r~ yields 

V~r., = ~ =_ r,/r~ (17) 

I ll 
"'0 A 

Pl 

Fig. 1. Angle 0 between two unit vectors ~ and ~. 

where the circumflex implies unit length so that fs is 
a unit vector in the direction of r~. Moreover, 

V , ~ =  1 ( l _ ~ j ~ )  (18) 
rs 

which may be proved by applying the product rule to 
rs = rs~s " 

V~r~ = I = rsV,$~ + fsf~ • 

The factor (1/rs) in (18) is a scale factor, which is equal 
to unity when rs itself happens to be of unit length. 
[The essential difference between (16) and (18) is that 
i~s of (18) is of constant length.] Vsi's is a uniplanar 
dyadic with its antecedents and consequents in a plane 
perpendicular to fs, as may be seen with coordinate 
axes chosen so that k=f~, and i and j perpendicular 
to i~; in this system I -  },~ = ii +jj.  

The following rules are important in the manipula- 
tion of V, the sequence of symbols often being crucial: 

V(ab) = (Vb)a + (Va)b 

V(a.  b) = (Va) .  b + ( V b ) ,  a 

V(a x b) = (Va) x b -  (Vb) x a .  

Note that in the first equation the quantities on both 
sides are dyadics, in the second, vectors, and in the 
third, again dyadics. 

Aside from vectors we are interested in angles, such 
as the angle 0 enclosed by two vectors r~ and r2 (Fig. 1), 
so that f~. f2=cos 0, where ~ = r j / r ~ .  We shall need 
the quantities V10 and V20, where the subscripts of V 
refer to the arrow ends of r~ and r2. Inspection of the 
geometry involved, or use of (18) on 0=cos  -~ (f~. fz), 
yields 

Vl0 = - (1/rl)n x rl = Pl/rl (19a) 

where n is a unit vector along r~ x rz (Fig. 1) so that 
~1 x ~z=n sin 0, while p~ is a unit vector in the plane 
of rl and r2, perpendicular to r~, and pointing in the 
direction of increased values of 0. Similarly, 

VzO = ( 1/rz)n x ~z = pz/rz (19b) 

where P:, perpendicular to r2 and in the plane of rl 
and r2, points again in the direction of increased 0 
values. If we also consider variation at the other ends 
of the unit vectors that define O, applying the V oper- 
ator to r~ and r 2 at the common tail ends, we find 

V o O = ( l / r l ) n  x ~ t -  (1/r2)n × f2 
= - ( p l / r a + p 2 / r 2 )  (19c) 

so that V o O + V ~ O + V z O = O .  

Variances and covariances of  vectors and distances 

It is instructive to apply these developments to a few 
simple situations. Consider first the vector a = r n - r A  
going from atom A to atom B. Then, since V a a = - - I  
and Vsa=I ,  we obtain from (14) 

r(a)  = c AA + c " " -  c A " -  c "A. (20) 
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Similarly, since Va = ~, the chain rule of differentiation 
applied to (20) yields 

o - 2 ( a )  = ~ . F(a) .  h = h .  C Aa . 
+ h . C  n n . ~ - 2 h . C  an .h  (21) 

where we have used the equality of ~ .  C BA . h and 
ii .  C An . h. The meaning of the terms on the right of 
(21) is that of 'components '  of the dyadics concerned, 
in the direction of the vector a. For example, h .  C An . 
is the diagonal element C~3 ~ of [C a~] in a Cartesian 
coordinate system in which the vector k is equal to 
while i and j are perpendicular to h. In this coordinate 
system the quantities (1/a 2) F u (a) with i, j =  I or 2 
are the variances and covariances of the angles that 
describe the direction of a in planes containing, re- 
spectively, the vectors i and k, and j and k, while the 
quantities ( l /a)  F u (a) with i=  3 and j #  3, or with i #  3 
and j =  3 describe the covariances between these angles 
of orientation and the length a. More details about 
covariance dyadics of this kind are given in the later 
discussion of the orientation of plane normals. In 
oblique coordinate systems, or in Cartesian coordinate 
systems in which k is not parallel to a, the relationship 
between matrix elements and quantities such as ~ .  C .  
is more complicated than just described, as is discussed 
in the Appendix. 

For isotropic positional variances of the atoms and 
no interatomic covariance, the variance of a is ~r] + ~r~, 
the variances of the angles describing the direction of 
a are (a~ +a2n)/a z, and the covariances between these 
angles and the distance a vanish. 

Let the position of a third atom C be given by ro  
and introduce a vector b = r c - r ~  going from atom 
B to atom C. Since Vnb = - I  = - V c b ,  the covariance 
dyadic F(a,b) of a and b is 

F ( a , b ) = C a n - C A C - C n e + c  ec. (22) 

As a check, the relationship 

F(a + b)=  F(a) + r(b)  + F(a, b) + F(b, a) 

is found to be satisfied. Moreover, since V a = ~  and 
Vb = b, the covariance between the distances a and b is 

cov ( a , b ) = h .  r ( a , b ) ,  b (23) 

which represents, so to speak, the interaction between 
the direction ~ and b as described by F(a,b). In the 
isotropic case 

coy (a ,b)= - a ~ ( ~ .  b ) = a ~  cos q~ (24) 

where q~= < A B C ;  that is, 9 is the angle between - a  
and b. These results in their most general form were 
derived by Sands (1966; see also Cruickshank, 1959). 

Variances and covariances involving bond angles 

We shall next consider the angles ~, 1/, and ? defined 
by three atoms A, B, and C, located at the endpoints 
of the vectors rA, rn, and rc (Fig. 2). The interatomic 
vectors a, b, and c are defined by c = r s - r a  and two 

equations obtained from this one by the simultaneous 
cyclic permutations of a, b, c and A, B, C. 

When Vn(~) is formed, the result is 

V n(~) --- ( 1 / c)pc (25a) 

with Pc = n x fz, where n = (~. x b)/sin 0¢; by vector al- 
gebra it also follows that pc=(b+~, cos e)/sin ~= - ( h  
+~zcosfl)/sinfl. The unit vector Pc is in the plane 
ABC, perpendicular to c, and points away from B. 
Similarly 

Vc(~) = (1/b)p, (25b) 
and 

v a ( ~ )  = - ( I  I c ) p c  - ( 1 / b ) p , ,  

= - ( l / b c ) ( b p c + c p t , )  (25c) 

where Pb = n x b = (~ + b cos ?) / sin ? = - (~: + b cos a) / 
sin ~ is a unit vector in the plane ABC, perpendicular 
to b, and points away from B. Considerations involv- 
ing geometry (Fig. 2) and vector algebra reveal that 
--(bpc+cpb) is a vector of length a, directed from A 
to the center of the circle through A, B, C. The direc- 
tion of this vector is not unexpected, because the varia- 
tion of ~ is zero when the position of A is varied tan- 
gentially to the circumscribed circle, in the plane ABC, 
or in a direction perpendicular to that plane; the gra- 
dient of ~ is perpendicular to these two directions. If 
e,t--- ( -  cos ? b + cos fl ~)/sin ~ denotes the unit vector 
pointing from A to the center of this circle, we have 

aea + cpb + bpc = 0 (26) 

and in terms of eA, (25C) becomes 

V A(C 0 =(a/bc)ea (27) 

and Va(c0 + VB(~) + Vc(C0 = 0. 

We are now in a position to express the variance of 
by using (11), (25a, b) and (27)" 

a 2 1 
rr2(~)= b2c2 e A . C AA • e A -Jr- C2 Pc" C Bn • Pc 

1 2 
q- b 2 Po • C c c  • Pt, + bc Pc • C nc • Pt, 

2a 2a 
+ b c  2 e a . C  ac .p~  +~cc2e.~.C an . Pc. (28) 

/ / / J  ~\X 

L;~, ,, a .-'?I B \\~ I~ / y  ..-"" / , I ,  

/ 

Fig. 2. Angles and vectors defined by three atoms A, B, and C. 
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For isotropic positional variances the three 'a tomic '  
terms are replaced by o.2, o.2, and a g. 

By cyclic permutation, (25a, b) and (27) can be ex- 
tended to the angles fl and 7,. The results yield variances 
for these angles and, together with (12), covariances 
among them, such as for c~ and fl: 

a b 
cov (e , f l )= ~c2 eA. C AA • Pc + ........ ac 2 Pc . C BB . eB 

1 CC c 1 CB c CC n 
+ ab Pb. " P " +  a c  (Pc. .P ,+P t , .  . % )  

1 
+ ~ -  (eA . C Ac • p, + Pb • c c a  • Pc) 

1 
+ c2- (ea.  C An . eB+Pc • C BA • Pc) (29) 

where e8 = ( -  cos ~ . +  cos yg)/sin fl is a unit vector 
pointing from atom B to the center of the circum- 
scribed circle, and p , = n x g  is in the plane of the 
atoms considered, perpendicular to a, and points away 
from A. In the isotropic case and if no interatomic co- 
variance scalar products such as ea • Pc turn up, all of 
which equal - c o s  7,, as shown by closer analysis (see 
Fig. 2), the result is 

ao.J ba2 o.2 ) 
cov(0c,f l )=--cos) '  bc z- + ac 2- + -ab " 

Equation (28) is well known in absence of correlations 
among atomic positions (see e.g. Cruickshank, 1959; 
Darlow, 1960), while relationships equivalent to (28) 
and (29), in terms of variances and covariances be- 
tween the distances a, b, and c, were given by Sands 
(1966). 

For  the covariance between an angle and a bond 
vector, such as between ~ and b, we obtain 

F(~ ,b)= ~ V,(~). C ~' . Vtb.  (30) 
S , t  

Noting that Vab = I, Vnb = 0, and Vcb = - I ,  we obtain 

a (CAa CAc) F(~,b) = b ~ e A .  

1 1 
+ P ~ ' ( C B a - C n C ) +  b Pb . (C c A - C c c )  (31) 

C 

where F(~,b) is a vector representing a 1 × 3 covariance 
matrix. In the isotropic case and no covariance be- 
tween atoms (31) takes the form 

a e A O . J -  1 r ( ~ , b ) = - b c  b pbo.c2 (32) 

which indicates that the correlation described is along 
eA for atom A and along -p~  for atom C. 

To obtain coy (7,b) we multiply (31) from the right 
by Vb=~,  

a ( C A a - C  Ac) b coy (~,b)=r(c~,b).  b =  b c e a .  

1 (C  cA C cc) ~ (33) 1 . ( C  BA CBC) . [a+ P b .  - -  • • + Pc c b 

In the isotropic case the second term vanishes; we also 
find that eA • b = - s i n / / =  - ( b / a )  sin ~ (see Fig. 2), and 

coy (~,b)= - ( s i n  o(c)o.za . (34) 

Similar considerations lead to 

coy (p,b) = 1 pc . (C ~ -  C ~c) . b 
C 

b . ( C  B~ CnC) .b  + en -- 
a c  

cov (y ,b)= 

1 . (CCa CCC) b__~_sin ~ a j  + sin y ac z 
P a  - -  • " " a ¢ a 

1 p~. (C a A -  C A c ) .  
C 

1 . (C RA C nc) b + P, - . a 

sin y c (C cA C cc) b ~ -  a~ 
+ ab e c .  - • a 

where the expressions at the ends of the arrows per- 
tain to the isotropic case and no interatomic covari- 
ance. The covariances for angles are related, as are 
those for angles and distances, because c~+fl+),= 
180 ° ; e.g. 

d(~)  + c o v  (~,/~) + c o v  (c~,~) = 0  
and 

cov (~, b) +cov  (fl, b) + coy (~,, b) = 0 .  

The  plane through three a toms  

To investigate the covariances that concern the orien- 
tation of a plane through the three atoms A, B, C (Fig. 
2), we introduce the vector q = b  × a = c  × b = a  × c = F ~  
where ~ is a unit vector perpendicular to the plane con- 
sidered. The length of q, denoted by F, is twice the 
area of the triangle A B C ,  F = a b  sin y = b c s i n  c~= 
ca sin fl (0< ~,fl,7< 180°). In Fig. 2, q is perpendicular 
to the plane of the drawing and points toward the 
viewer. Our goal is to find and analyze the covariance 
dyadic F(q). Since the length of q is F, we expect the 
component of F(q) in the direction of q to be O.2(F). 
Perpendicular to q, F(q) should contain the variances 
and covariances of the angles describing the direction 
of q (and thereby the orientation of the plane A B C ) .  

We find that VAq=I X a, while analogous results 
hold for VBq and Vcq. Dyadics of the kind I × a can 
be expressed alternatively by introducing an arbitrary 
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unit vector n perpendicular to a, and the unit vector 
p a = n  x h  that is perpendicular to both, whence I =  
h.~ + n n  + PAP,. Execution of the cross products in I x a 
then yields 

I x a = a ( n p .  - p a n )  = a x I = - I x a (35a) 

where I x a is the dyadic conjugate to I x a. It also fol- 
lows that  

I x a .  I x a = a2(nn + PaPa) • (35b) 

Other aspects of  I × a are the equivalent forms of  the 
scalar products  with an arbi trary vector p 

I x a .  p - l .  a x p = a x p = p ,  l x a  

p .  I x a - p x I .  a - p x a = I x a ,  p .  (35c) 

Combinat ions that include the arbi trary dyadic C may 
be reduced in a similar way: 

p .  I x a .  C = a x p .  C 
C .  I x a .  p = C .  a x p .  (35d) 

Using some of  these results and noting also that  e.g. 

VAq= - a × I ,  we find from (14) 

r ( q ) =  ~ ~. - a x I .  C "~8 . I x b (36) 
.,4 B 

where the two sums range individually over all three 
atoms, and in each term the three vectors a, b, and c 
are associated respectively with A, B, and C in the 
manner  exhibited by the term shown. 

Turning for a moment  to isotropic positional vari- 
ances and setting n equal to ~] in (35b) and in similar 
relationships for b and c, we find upon combination 
with (36) 

F(q) =a2(F)~ + a2a2Ap.pa + b2a~pbpb + cZa2cp~p~ (37) 

with 

o'2(F) = a2o'] + bZ~r2n + cZcr~. (38) 

The coefficient of the dyad ~]~] in (37) is the variance 
of the length F of q, that  is, of twice the area of  the 
triangle ABC. The unit vector p, = ~] x h is in the plane 
ABC, perpendicular  to a, and points away from A. 

• The definitions and orientations of Pb and Pc are similar 
(Fig. 2). The port ion of (37) not related to q]c] is there- 
fore a planar  dyadic, associated with the plane A BC 
perpendicular  to q. As shown below, it is just  the diadic 
F(~) that describes the orientation of q, except for a 
factor 1/F z. 

To extract F0]) from (37) we consider (] as a func- 
tion of q and note that  V(( ] )=( l /q) ( I - ( ]~] ) ,  so that  

Y(q)=(1/q') ( l -qq).  r(q). ( I -  qq'i). (39) 

The portion of F(q) associated with the direction of q 
is annihilated by this operation, with the result that 

F0]) = -  2-P,P,+ - - P b P 0 +  2 PcPc (40) ho h~ hc 
where h,, h0, hc are the altitudes in the triangle A B C  
perpendicular on the sides a, b, c respectively, that  is, 
h, = F/a, etc. 

To obtain F0]) for the anisotropic general situation 
we combine (39) with (36) and note by use of (35a) 
that e.g. 

( I  - ~](]) . a x I = - apaq. 

The final result is 

r 0 ] ) =  ~. ~ (1/ho)pa~]. C a " .  4(1/hb)p~ (41) 
A B 

where the summation is analogous to that  employed 
in (36), ha and pa being associated with A, hb and Pb 
with B, and hc and Pc with C. We see that  this expres- 
sion is entirely analogous to (40) and that  the uncer- 
tainty in the direction of 4 is affected only by the 
atomic positional uncertainties in a direction perpen- 
dicular to the plane ABC.  

To give F(4) in component  form, we introduce a 
right-handed Cartesian coordinate system with k=~], 
and i and j perpendicular to k, in which ~x and ~y are 
the directional cosines of a relative to i and j, and 
similarly fix, fly and },x, y), those of b and c. Then p,, 
has the directional cosines -~y ,  +7x, and those of Pb 
and Pc are -fly,  +fix, and - y , ,  +~'x. In addition, let 
~0y be the angle of rotation about  j that  describes the 
orientation of q in the plane i, k, such as ~p.~ = 90 ° rela- 
tive to i. Let ~x be the similar angle about  i, in the 
plane j, k. Then O'2((fl.v) ~-~- Fx~0]) = i .  F0] ) .  i; cov ((ox,~pr) 
=/'120]) = i .  F((]). j ;  and az(~Ox)= F220]). We obtain 
for these variances and covariances 

az(~py) = ~ ~ (o~y/ha) (flflht,)CCf (42a) 
A B 

cov (~o,,,(p,,)= ~. ~ -(~x/ha) (fl,,/hb)C3af (42b) 
A B 

a2(~0x) = ~ ~ (O~x/h,,) (flx/hh)CAf (42C) 
A B 

where C3a3 n is the same as (]. C AB . ~], etc. Both sums 
are over all atoms, and oc and h, are associated with 
A, etc. 

T h e  v a r i a n c e  o f  t h e  t o r s i o n  a n g l e  

Among  the different possibilities of atomic arrange- 
ments of  four atoms and the quantities associated with 
them, we shall consider only the torsion angle in a 
chain of 'bonded '  atoms X A B Y  (Fig. 3). We introduce 
the vectors q~=b x a and q 0 = c  x b, which are anal- 
ogous to the earlier vector q. The angle enclosed by q~ 
and qe is the torsion angle r, about  b, for which cos r 
=Oh. Cla and 

sin z- = (~  x b .  ~:)/sin ~ sin fl (43) 
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which also defines the sign o f  z (see e.g. Dunitz ,  1968; 
Marsh  & Waser,  1970). 

The  gradient  dyadics  of  q, and  qo are 

Vxq~, = I x b Vaqa = I x c 
Vaq~ = I x u V n q a  = I x v 

Vnq~ = I x a Vrqa = I x b (44) 

where u = - a - b  and  v = - b - e .  The  fol lowing are 
then typical  terms o f  the covar iance  dyadics  tha t  con- 
cern q, and  qa: 

- F ( q ~ ) = b x  I .  C xx . I x b + b x  I .  C xA . I x u  
+ u x l .  C "4x . l x b + . . .  

- F ( q a ) = c x I .  C AA . I x c + c x I .  C an . I x v  
+ v x l .  C ~'4 . I x c + . . .  

- r ( q ~ , q a ) = b x I .  C xA . I x c + b x I .  C x~ . I x v  
+ b x I . C  x Y . I x b + . . .  (45) 

The  var ia t ion  o f  the tors ion  angle  r relative to q, 
and  qo can be found  f rom (19a) and  (19b), where we 
put  i~1 = ~ ,  f2=Cle, and  n=Cb, resul t ing in 

Vq~(z) = ~l/q~, = - - (b  x ~)/q~ (46a)  
and 

Vqa(z)=~2/qo=(~ x 4a)/qa . (46b) 

These equa t ions  result  in 

1 2 
trZ(r) = q2 P~ • F ( q , ) .  p~ + - - -  p~. F ( q , , q a ) .  P2 

q, qo 

1 
+ q~ P2. F(qo) .  P2- (47) 

The  c o m b i n a t i o n  o f  (45) and  (47) leads to expressions 
such as p~ . b x I .  C x~ . I x c .  P2 = P~ x b .  C XA . C X P2" 
By vector  a lgebra  the needed pre- and  pos t fac tors  can 
be t r ans fo rmed  into 

Pl X a = a cos ct ~]~, 

Pl X b = - b ~  

p~ x u = ( b -  a cos ~)~, 

b x P2 = - b q B  

c x P2 = c c o s / ~ a  

v x P2 = ( b -  c cos/~)~e.  (48) 

Wi th  q~ = ab sin ~ and  qo = bc sin fl, the final result  for  
tr2(r) turns  out  to be 

qq b, 
Y 

Fig. 3. Angles and vectors defined by a chain XABY of four 
atoms. 

XX~ 2 X Y ,  e YYeB 
O ' 2 ( T ) -  a z sin 2 ~ ac sin ~ sin fl + c '  sin 2 fl 

2 [ b - a  cos 
/ X A ~  + cot  XA~a 

+ ab sin ct a sin 

b -  c cos/~ / 
- cot  ct X B ~  + ........ . ...... X B ~  

c sin fl f 
2 f b - a  cos 

+ bc sin fl ] a s i n ~  YAB:, -  cot fl YAt~ B 

x cot  ~ YBt~,-  b -  c cos fl yBtu ~ 
c sin fl / 

1 { ( b - a c o s ~ )  2 2 ( b - a c o s ~ )  
A A , ~ +  ........ . ......... 

+ b 2 a s i n ~  a s m c t  

x cot  f l ( -  AA~t ~ + AB,~) + cot 2 fl AAt~ ~ 

2 
. . . . . .  . 

ac sin ~ s i n  fl [ ( b -  a cos ~) ( b -  c cos fl) A B ,  B 

+ cot  ~ cot  fl BArB ] + cot 2 ~ BB,~ 

2(b - c cos fl) 
+ . . . . . . . .  cot  ~ ( B A a B -  BBs ,  ) 

c sin fl 

( b - c c ° s f l )  2 } 
+ BBaa . (49) 

c sin fl 

We have used abbrevia t ions  such as XA,B to denote  
4 , - C x A .  ~]a. Note  tha t  AB~B and BA,a are not  the 
same quant i t ies  while e.g. A B ,  a and BAo,  are, because 
C aB and  C Ba are conjugate  dyadics.  When  all posi- 
t ional  a tomic  variances are isotropic  and  there are no 
covar iances  between different a toms,  ' a tomic '  terms 
such as AA,~ and AABa become equal  to a j and  AA,o  
to aJ ( t ] , .  ~ a ) = a  j cos r, while ' in te rac t ion '  terms such 
as A B , ,  are zero. The  result  is an equa t ion  publ ished 
earlier (P. J. Huber  in Huber-Buser  & Duni tz ,  
1961 ; S tanford  & Waser,  1971). 

An interest ing case of  covar iance  is tha t  caused 
a m o n g  a tomic  posi t ions  by symmetry .  Let, for example,  
a toms X and Y and  a toms A and B be related by a two- 
fold axis. Equa t ion  (49) can then be simplified by the 
me thods  described by Sands (1966) (note tha t  the 
twofold  axis relates q~ and -qB) ,  with the result 

4 X X ~  8 f b - a  cos ..3/_ ~[ .... 
a 2 ( r ) -  a 2 sin z ~ -ab sin a a sin ct XA,~ 

} 4 { ( b - a c ° s ~ )  2 
+ c o t ~ X A , a  + b2 a sin ~ A A , ,  

_ 2 ( b - a c o s ~ )  c o t ~ A A , a + c o t  2 ~ A A a a [  
a sin / 

4tr2x 4a  2 { ( b - a c ° s c ~ )  2 
+ b 2 ..... -a 2 sin 2 ~ a sin 

_ 2 ( b -  a cos ~) cot  ~ cos r + cot  2 ~[ (50) 
a sin J 
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It can be seen that if a2(r) had been calculated without 
the covariances of symmetry-related atoms, the result 
would have been too small by a factor of 2, or the 
standard deviation by a factor of [./2. 

The best plane through a set of atoms 

To treat the best plane through N atoms (N_> 3) we 
proceed from the results described by Schomaker, 
Waser, Marsh & Bergman (1959), except that we use 
dyadics instead of matrices, so that the metric tensor 
does not appear explicitly. We begin with a summary 
of the pertinent results of that paper. The equation of 
a plane at a distance d from the origin is 

r .  m = d  (51) 

where m is a unit vector perpendicular to the plane. 
Let the atoms to which such a plane is to be fitted 
have the positions r ~, s = 1, 2 . . . .  N, and let the weights 
w~ be attached to them. These weights may be chosen 
inversely proportional to m. C ~~ . m, the positional vari- 
ances perpendicular to the plane, or in any other 
suitable way. The distance of atom s from the plane 
is r ~ . m - d ,  and m and d must by definition of the 
best plane satisfy the condition that the weighted sum 
of the squares of these distances is a minimum: 

S =  ~ ws(r ~ . m - d ) 2 - [ w ( r ,  m-d)Z]=min .  (52) 

We are using here and later the Gaussian bracket, [], 
to indicate summation over all atoms. [An r in such 
a bracket refers to a positional vector r ~, rather than 
being an arbitrary vector as in (51).] The solution to 
the problem posed by (52), with the subsidiary con- 
dition that Iml = 1, leads to 

d = m .  ( r )  (53) 
where 

(r)  = [wr]/[ w] (54) 

is the centroid of the weighted atomic positions, and 
the symbol ( )  denotes the weighted average. More- 
over, m is a solution of the equation 

A.  m = 2m (55) 
where 

A=[wRR] = ~ w~WW (56) 

and W = r ~ - ( r ) ;  2 is the smallest eigenvalue of the 
determinantal equation 

IIA-/1111=0 • (57) 

By the relationship 

2 = m .  A .  m=[w(m.  R) (R.  m)] 
=[w(m. R)2] = Smin (58) 

/1 is the minimum value of the sum of the weighted 
squares of the distances. 

If V, is the del operator relative to r', then V , ( r )=  
(wt/[w])l, and 

VtRk = (6tk - wt/[w])l. (59) 

Applying Vt to (53) yields 

V,d= V,m. (r)  + w,m/[w] (60) 

where V,m is yet to be related to known quantities. 
One equation for Vtm follows from applying V, to 
m .  m =  1, 

Vrm. m=O (61) 

so that the consequents of Vtm must be perpendicular 
to m. From (58) and (59) 

V,/1= Vt ~ w,(m. W)2:  2Vim. ~ w,W(W, m) 
+ 2w, m{(m. R ' ) -  ~ ws(W. m)}. 

The first term on the far right equals, by (56) and 
(55), 2V,m. A.  m=22V,m,  m, which is zero, by (61). 
The second term in the brace also vanishes, because 
[wR] = 0. Hence 

V,2 =2w,(m. R')m (62) 

where (m. R') is the distance of atom t from the plane. 
The gradient V,2 has therefore the direction m and is 
not affected by a change of m through variation of r'. 

Another relationship for Vim follows from using Vt 
on both sides of (55). Operating with V, on A.  m =  
~wsW(W. m) yields, after some manipulation 

V , ( A . m ) = V , m . A + w , { m R ' + ( m . R ' ) l } .  (63) 

For the right side of (55) we obtain, using (62) 

V,(Zm) = 2wt(m . Rt)mm + 2Vim. (64) 

Equating (63) and (64) yields the following equation 
for V,m: 

V,m. (A-21)=wt{(m.  W) ( 2 m m - l ) - m R ' ) .  (65) 

The dyadic ( A - 2 I )  is planar, since/l has been specifi- 
cally chosen to this end, being the eigenvalue for which 
m is an eigenvector of A. Equation (65) can be solved 
for Vtm only in the plane orthogonal to m, but that 
is all that is required, because Vim is itself a planar 
dyadic, by (61). We select a coordinate system with 
k = m, choosing i and j in such a way that A has only 
terms in ii, jj, kk. The directions i and j correspond 
to normals on the planes called by Schomaker et  al. 

(1959) the 'worst' and the 'intermediate' planes. If X ~, 
Y', and Z ~ are the components of W, we find 

A - / 1 1 = [ w ( X 2 - Z 2 ) ] i i + [ w ( Y Z - Z Z ) ] j j  . (66) 

Equations (65) and (61) can now be solved for Vim 
in terms of the coefficients of all dyads that involve i, 
j, and k, with the result 

,[ Ztii + Xtki _Zt_jj + r 'k j / ,  
~Ttm= -- wt 1 .~ -2~ -Z23]  + [ w ( Y 2  Z2)]] • (67) 

The numerators on the right side of (67) can be ex- 
pressed in terms of the second moments of the atom 
positions relative to the centroid, (X2), (y2) ,  and 
(Z2), defined by equations of the form 

( X 2 ) = [wX 21/[w], (68) 
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in terms of which 

Wt { Zti + Xtk 
V t m =  -[w] < Y 2 > "  <Z2> 

Ztj + Y'k I 
( - i ) +  .-<]~>._<ZZ > ( - j ) . .  

(69) 

It is instructive to consider the details of the right 
side of (69). The factor w,/[w] is the weight associated 
with atom t, normalized to 1. With the abbreviations 

Z ti + X t k  

~'= <xb_<z~> 
Ztj + Y ' k  

11' = (70) 
< y b - < z ~ >  

we have 

V t m = ( w t / [ w ] ) { ~ ' ( - i ) + q ' ( - j ) }  . (71 )  

If the position of atom t is changed by dr t, the change 
dm of m is given by 

dm = dr t . V,m 
=-(wt / [w]){(~ ' .  d r ' ) i + ( q ' ,  dr ')j}.  (72) 

The upper right portion of Fig. 4 illustrates a situa- 
tion in which dr ~ is in the x, z plane, so that d m =  
- ( w , / [ w ] ) ~  t cos 0 dr  t. Note that when atom t is moved 
in the direct ion+k,  the orientation of the best plane 
changes so as to tilt m towards the left; the direction 
of dm is then - i .  When atom t is moved in the direc- 
tion +i ,  the orientation of the plane is affected in a 
similar way, but the effect is less by a factor Z t / X  t 
than is the effect of a motion in the direction +k ,  Z t 
and X t acting as respective lever arms. The factor 
(<X2>_ < y z ) ) - t  in ~' shows the stabilizing influence 
of a large value of <X 2) and a small value of <Z 2> on 
the orientation of the plane. In the y z  plane the situa- 
tion is analogous. 

dm 

7 t 

t 
i' 

X t ; 
[ 

~t 

centroid--,,\ l 
best plane.~ 

d 

k 

origin 
< x >  

i 

drtcos O~ 
atom t-, 

[ X ~ 

< 7 >  

0 
~dr t 

Z t 

Fig. 4. Effect of the change of an atomic position on the param- 
eters of a best plane. 

As already stated, V,m is a planar dyadic; the plane 
of its antecedents is extended by ~' and 11 ~, and the xy 
plane is the plane of its consequents. For atoms for 
which Z t is zero, V~m is axial (or almost axial when 
Z ' < X  ~, Y ' ) ,  the direction of the antecedent being k 
and that of the consequent - (X'/<X2>)i- (Y'/< y2))j. 

Returning to (60), (69), and (71), we find 

w, {k-(x>~'-  <y>n'}. (73) V,d= [w] 

The change in d caused by a change dr t in r t is given by 

dr t .V,d=(w,/[w]){dzt ( x > d r  t . ~t ( y ) d r t  . ~ t )  . 

The first term represents the direct effect of the change, 
as can be seen by tracing the origin of this term, or 
directly by noting that the other terms vanish when 
<x>= <y> =0,  so that the centroid lies on the z axis. 
The other terms come about because changes of orien- 
tation of the plane cause changes in d that are propor- 
tional to the lever arms <x> and <y>, as can be seen 
in Fig. 4 for the case that dr '  is in the x z  plane. 

In terms of the vectors ~t and Ii t we find the follow- 
ing formulas for the covariances involving m and d: 

1 

+ ( ~ ' .  C ' t  . ~ ' ) ( i j + j i ) + ( q ' .  C ' t  . q ' ) j j } .  ( 74 )  

The coefficients of i i  and jj represent the respective 
variances of the angles % and q~x describing the orien- 
tation of the plane normal m (or of the components 
mx and n b of m), as discussed for the case of three 
atoms in connection with equations (42). The coeffi- 
cient of ij or ji contains the covariance between q~.~ and 
%. The main contributions to F(m) are from the com- 
ponents of the atomic positional variances that are 
perpendicular to the plane considered, but there are 
also small contributions from these variances in other 
directions. Detailed analysis shows that for a plane 
through three atoms the present approach yields the 
same results for the variances and covariance of ~0x 
and % as is given by (42a, b, c), provided that unit 
weights for the three atoms are used; note also that 
all Z ' are zero for three atoms. Variances and covari- 
ances of other angles that describe the direction of m 
are discussed in the Appendix. 

For the variance of d the result is 

1 

- <y>T I ' )  • C ' t  • ( k - < x > ~ t - < y > q  t) ( 75 )  

where the direct contributions by the atomic positional 
variances and covariances are manifest in the terms 
with k, while the other terms represent indirect contri- 
butions through the variance of m. The indirect con- 
tributions vanish when (x> and (y> happen to be 
zero, that is, when the centroid of the points lies on 
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the z axis, but these terms can also completely over- 
shadow the direct contributions. 

Finally,  the covariance between d and m is described by 

1 
F ( d , m ) =  [w]2 ~ ~ w ~ w , ( { ( - k + ( x ) ~ + ( y ) r l O . C " . ~ ' } i  

+ { ( - k +  ( x ) ~ +  (Y)q~). C s' • ~l'}j), (76) 

where the coefficient of  i is coy (d, tA.) and that of  j is 
cov (d,~ox). For the case of isotropic positional vari- 
ances and no covariances between different atoms, 
explicit formulas for the covariances among m and d 
were recently published, together with two numerical 
examples (Waser, Marsh & Cordes, 1973). 

The foregoing developments may be applied to the 
s tandard deviation of the dihedral angle 0 between two 
'best '  planes. To distinguish the two planes we shall 
use primes for all quantities associated with the second 
plane. The angle 0 is defined by the two plane normals 
m and m', and its variance can be derived from the 
quantities F(m), F(m'), and F(m, m'), the first of  which 
is given by (74) and the second by a similar expression, 
in which all quantities have pr imes;  the formula for  
F(m,m')  is [in slightly more compact  form than (74)] 

1 
r (m,  m ' ) =  [w]-[-w'] ¢ ~ w~w;'( i~+ J~l') • 

× c*" .(~,"i' + n"J') • (77) 

The index s runs over all atoms in the first p la te  and 
the index t '  over all atoms in the second plane;  some 
atoms may be common to both planes. To find az(O) 
we proceed as in (47) and shall need products such as 
p .  F ( m , m ' ) .  p', where p and p' are unit  vectors anal -  
o g o u s  to the vectors Pt and P2 introduced in connec- 
tion with equations (19). In terms of the vectors k and 
k' of  the orthogonal coordinate systems associated with 
the two planes 

P 
p' 

It turns out that 
parts of  p and p' 
tribution, because 

= k  cot 0 - ( k ' / s i n  0) 
= k' cot 0 - ( k / s i n  0 ) .  

in the required scalar products the 
associated with cot 0 make no con- 
of orthogonality,  with the result that 

az(o)=(1/sin 0)2{k ' . r ( m ) .  k' 
+ k .  F ( m ' ) .  k + 2 k .  F ( m , m ' ) .  k ' } .  

Explicit formulas for the isotropic case and zero inter- 
atomic covariances, as well as a numerical  example, 
are available (Waser, Marsh & Cordes, 1973). When 
the two planes are related by a twofold axis the situa- 
tion is analogous to that described for  tor s ion  angles. 
That  is, if all symmetry-induced covariances between 
different atoms are simply ignored, the resulting o2(0) 
is too small by a factor of 2. 

I wish to thank Robert  S. Deverill, Richard E. 
Marsh,  and Richard H. Stanford Jr for helpful discus- 
sions. 

A P P E N D I X  

Covar iance  matr ices ,  tensors  and dyadics  

In this Appendix we briefly consider the relationship 
between the components  of  a covariance matrix and 
the corresponding tensor and dyadic. Let the covari- 
ance matrix of  the coordinates of  an atom in two dif- 
ferent coordinate frames at and -~r (i, r = 1, 2, 3) be [C] 

and [C] with the respective elements C u and C r~. Let 
the t ransformation between the two coordinate sets 
x j and .~' be 

x i = t ~£" 

to which the t ransformat ion of the axes is contragre- 
dient 

i 
ar = t rat • 

The matrix elements C u and C '~ are then related by a 
propagation-of-error formula of  the form (5) 

C i S =  ~xi ~x  s O ,~=t [  ts O,  ~ 

which shows that the matr ix elements C u are the con- 
travariant  components* of  a tensor (which is the reason 
for  the upper indices in C u and x ~, a usage that we 
restrict to this Appendix).  It follows that the covari- 
ance dyadic 

C -  CiSa#.l i s - r s  = = t , G C  aiaj Crsfirfis 

has the same form for different axes of reference, which 
justifies its introduction. The same considerations apply 
to covariances between the coordinates of  different 
atoms, or between the components  of  the same vector 
or of two different vectors. The coefficients C u are 
called contravariant  nonionic components  of  the dyadic 
C. Such dyadics may also be given in terms of  mixed 
or of  covar iant t  components,  in combinat ion with 
reciprocal vectors b ' :  

C = Cimalb '' = Cm I b'a~ = C,,mb"b m 

w h e r e  Cim:gmjC I J, Cm i : g m j C  Jl, Cnm: C lj g,,lgms , g,m = 
a , .  am. When C U =  C i~, as e.g. for the covariances be- 
tween the coordinates of  an atom, then Cm ~ = C ~  and  
C.m=Cm. .  For isotropic positional variances, C U =  
giJt:r2, Clm=61mt72 and C , , , = g . , , a  2, where gU = b  i " b J 
(see e.g. Templeton,  1959). This implies that the identity 

b~b j dyadic is of  the form I = a ~ b ~ = b ~ a , = g U a , a s = g u  . 
In terms of  the crystallographic coordinates x ~ associ- 
ated with the axes as, V has the form V = b  * ~/Ox ~ . 

* The same transformation properties are found when the 
positional covariance matrix is recognized as being the inverse 
of the matrix [V] in the exponent - ½ Flsxtx j of the multivariate 
Gaussian that describes the positional uncertainty of a given 
atom. As indicated, e.g., by Cerrini [1971, especially equations 
(2) and (3)], it follows that [CUl=[Vu1-1 transforms in a con- 
travariant manner. 

t The confluence of ideas from different fields leads at times 
to juxtapositions of quite unrelated meanings of the same word 
as those of 'covariance'. 



J U R G  W A S E R  631 

Suppose then that the quantity n .  C .  m is needed, 
where n = o ' a ,  and m = / d a ,  are unit vectors with the 
contravar iant  components  v ~ and/z ' .  We find 

n .  C .  m = o l ( a i ,  a~)C't(at ,  aj)fl j =oi/tJgisg.itCSt. 

We may also use the covariant  components  of  the 
covariance tensor, or indeed the covariant  components  
of  n and m (e.g., vs=g~sv~), in terms of  which 

n .  C .  m = vipJC,j = v d q C  ij = VduJC~ . 

A related t ransformat ion  problem concerns the an- 
gles ~0x and q~y that  describe the orientation of  the nor- 
mal m of  a best plane. Suppose that  the direction of  
m is characterized by angles of  rotat ion ~0,, and ~0o about  
unit vectors u and v other than i and j, but  also per- 
pendicular  to m, and that  we wish to know the vari- 
ances and covariance of  these angles. Let Z be the 
angle between u and i, ~ the angle between v and i, 
and /~ = ~ - ) : '  the angle between u and v (Fig. 5). Now 
al though finite rotations cannot  be considered to be- 
have like vectors, in part  because the sequence may be 
impor tant  when rotations are combined, it is possible 
to consider infinitesimal rotations as componeats  of  
vectors, when terms of  higher order than the first are 
neglected (e.g., Goldstein, 1950, pp. 124 ft.). For  ex- 
ample, the changes 6q)x and &0y of ~0x and ~0y can be 
combined into the vector 

e = 6~oxi + &oyj. 

/ 

VA U / 

v . 
I 

Fig.5. Axes for specifying the orientation of a plane normal. 

Then, using the transformation equations between the 
frames i, j and u, v and the fact that  ~: = 6(;,,u+ 6tpvv, 
we find that  

0"2(~ou) = { s in  2 q/o'2(~Ox) -- 2 s in  ~ cos ~, cov (~Ox, ~oy) 

+cos  2 ~a2(rpy)}/sin 2 /k 

o'2((pv) = { s in  2 ZO'2(~Ox) -- 2 s in  Z c o s  Z cov (tpx, ~oy) 
+ cos 2 Za2(~y)}/sin 2/k  

cov (~Ox, ~y) = - {sin V sin Z a2(~Ox)- (sin V cos Z 
+ cos ~, sin Z) cov (q~x, ~oy) + cos V cos )(~72(¢py)}/sinZ/k. 
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